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A model was made for prediction of the trajectory of an irregularly shaped 
body moving through a resistive medium with high velocities, using data for 
aerodynamic forces obtained from numerical simulations. For a different 
orientation of the body with respect to the velocity vector of the center of 
mass, the aerodynamic resistance force is different for two reasons: the 
exposed surface area is different and the shape is different. In this regard, 
216 numerical simulations of airflow around of the body of an irregularly 
shaped body in different orientations were carried out, for one full rotation 
(around one axis of rotation) of the body, with angular increments of 15 (0 -
360), for the following velocities: 0.6, 0.8, 1, 1.2, 1.3, 1.5, 2, 3 and 4 Mach. The 
outcome of these simulations is the resistance forces and aerodynamic 
moments as the result of motion of the body in various directions relatively 
to the body. After the simulations had been performed, the results of the 
resistance forces and aerodynamic moments were used to integrate the 
equations of motion with an assumption that the irregularly shaped body 
had a continuous rotation all the way along the trajectory with relatively high 
angular velocities. With this assumption, an effective aerodynamic force was 
calculated which takes into consideration that the aerodynamic force varies 
due to the rotation of the body. The results show that the trajectory of an 
irregularly shaped body is curved in space because the side component of the 
aerodynamic force cannot be ignored because of the irregular shape of the 
body, which leads to significant lateral movement of the body from the initial 
direction of flight. 
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1. Introduction

*An estimate of trajectory and velocity during
flight for irregularly shaped bodies is often of great 
practical interest. One example of such bodies are 
the fragments (with their stochastic and irregular 
shape) created by the detonation of high explosive 
projectile that move at high initial velocities (3-5 
Mach), and are unstable since the beginning of 
movement due to initial disturbances (extremely 
high-pressure detonation products, of an order of 
20-40 GPa, are responsible for high initial angular
and translational velocity).

In Kljuno and Catovic (2017a, 2017b), the initial 
instability of such fragments and the stability zone 
around the equilibrium orientation was analyzed. It 
was found that after the decrease of their kinetic 
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energy of rotation, the fragments may come into the 
state of oscillation (around the center of mass), and 
also there are rotations around other axes due to the 
aerodynamic moment, so that the body can still be 
overturned during the flight. All this points to the 
complexity of estimating trajectories of such bodies. 

Estimation of the trajectory, velocity and kinetic 
energy of the HE projectile fragments is significant 
from the point of view of the lethal zone estimation 
around the HE projectile, but also for estimating the 
effective range of these fragments, which may be of 
practical interest in the case of an unexpected 
explosion of military depots.  

In addition, in recent years there have been more 
and more attacks on civilians using improvised 
explosive devices, so exploration of motion, stability 
and kinetic energy of bodies resulting from the 
explosion of such devices is justified. 

For the body of an irregular shape it is necessary 
to predict the trajectory of the center of mass; 
however, for each different orientation of this body 
relative to the airflow velocity, there is a different 
aerodynamic force which in general deviates from 
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the air-flow velocity relative to the body of an 
irregular shape. 

Since there is generally a relatively large number 
of body revolutions along the trajectory of the center 
of mass (i.e., for the fragment of the HE projectile), it 
is necessary to define a method for the approximate 
calculation of the trajectory, which will account for 
the rotation of that body or variation of the 
aerodynamic force at the rotation of the body. 

2. Physical model 

The idea is to use an effective vector of the 
aerodynamic force in one rotation of the body for the 
prediction of the trajectory, and that the trajectory is 

obtained incrementally, where each increment will 
correspond to one rotation of the body. 

When the body rotates with high angular 
velocities, a gyroscopic effect appears, or 
"resistance" to the changes of the axis of rotation 
direction, as in Fig. 1. 

The following assumptions have been adopted in 
the physical model: 

 
 Assuming there are relatively high angular 

velocities, the axis Ω-Ω (Fig. 1) retains its direction 
at a full rotation of the body. 

 Every orientation of the body at rotation around 
the axis Ω-Ω is evenly represented, ie it acts in 
equal time during the full rotation of the body. 

 

 
Fig. 1: Schematic illustration of the effect of the aerodynamic force in the individual orientations of the body 

 
Under the assumptions made, the effective value 

of the aerodynamic force can be represented in 
following way: 

 

�⃗�𝑎𝑒𝑟𝑜 =
𝑆

𝑛
=

1

𝑛
∑ �⃗�𝑎𝑒𝑟𝑜−𝑖

𝑛
𝑖=1 ,                    (1) 

 
where n is the number of incremental body 
orientations in one full rotation. The effective value 
of force is that force whose impulse will be the same 
over a time period of one full rotation: 

 

�⃗�𝑎𝑒𝑟𝑜−𝑒𝑓 =
1

𝑇
∫ �⃗�𝑎𝑒𝑟𝑜(𝑡) ⋅ 𝑑𝑡

𝑇

0
,                   (2) 

 
where T is a time period of a full rotation. If the 
integral on the right side of Eq. 2 is calculated 
approximatively (numerical methods) by sum: 

 
1

𝑇
∫ �⃗�𝑎𝑒𝑟𝑜(𝑡) ⋅ 𝑑𝑡

𝑇

0
≈

1

𝑛∆𝑇
∑ �⃗�𝑎𝑒𝑟𝑜−𝑖∆𝑇𝑛

𝑖=1 =
1

𝑛
∑ �⃗�𝑎𝑒𝑟𝑜−𝑖

𝑛
𝑖=1  , (3) 

 
we obtain the same expression as (1) given earlier 
that is used as the basis for estimating the trajectory.  

Generally speaking, the trajectory of the center of 
mass is precisely obtained using the law of the 
center of mass movement and the law of the 
momentum change for the center of mass: 

 
𝑚�⃗�𝑐𝑚 = 𝑚�⃗� + �⃗�𝑎𝑒𝑟𝑜,                    (4) 
𝑑�⃗⃗�𝑐𝑚

𝑑𝑡
= �⃗⃗⃗�𝑎𝑒𝑟𝑜−𝑐𝑚,                     (5) 

where �⃗⃗⃗�𝑎𝑒𝑟𝑜−𝑐𝑚 is the aerodynamic moment for the 
center of mass.  

Similar to the search for an effective aerodynamic 
force (1), the effective aerodynamic moment value 
can be written as: 

 

�⃗⃗⃗�𝑎𝑒𝑟𝑜−𝑒𝑓 =
1

𝑇
∫ �⃗⃗⃗�𝑎𝑒𝑟𝑜(𝑡)𝑑𝑡

𝑇

0
,                    (6) 

 

or, similiar as for the aerodynamic force: 
 

�⃗⃗⃗�𝑎𝑒𝑟𝑜−𝑒𝑓 ≈
1

𝑛∆𝑇
∑ �⃗⃗⃗�𝑎𝑒𝑟𝑜−𝑖∆𝑇𝑛

𝑖=1 =
1

𝑛
∑ �⃗⃗⃗�𝑎𝑒𝑟𝑜−𝑖

𝑛
𝑖=1  .            (7) 

 

Depending on the magnitude of the aerodynamic 
moments, there will be a certain change of rotation 
axis Ω-Ω (Fig. 1) at the end of each full rotation of the 
body. However, within one increment of the 
trajectory, the orientation of axis Ω-Ω is considered 
unchanged. Using the aforementioned assumptions 
and Eqs. 1, 4, 5, and 7, a basic model for estimating 
the trajectory can be set. Projections of the 
expression (4) on the inertial coordinate system axes 
are: 
 
𝑚�̈�𝑐𝑚 = 𝐹𝑎𝑒𝑟𝑜−𝑥,                     (8) 
𝑚�̈�𝑐𝑚 = 𝐹𝑎𝑒𝑟𝑜−𝑦,                     (9) 

𝑚�̈�𝑐𝑚 = 𝐹𝑎𝑒𝑟𝑜−𝑧,                   (10) 
 

where  �⃗� ∥ �⃗⃗� is assumed, and vector �⃗⃗� is a unit vector 
of z axis. By integrating (8), (9), and (10) for the 
period of a single rotation, we obtain: 
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∫ 𝑚�̈�𝑐𝑚(𝑡)𝑑𝑡
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𝑇

0
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𝑇

0
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By approximate calculation (numerically), (11), 
(12) and (13) become: 
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1
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where p denotes the end of the p-th trajectory 
increment or the end of the p-th rotation.      

By second integration of the terms (14), (15) and 
(16) we obtain:  
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The force �⃗�𝑎𝑒𝑟𝑜−𝑒𝑓  should be calculated for each 

increment of the trajectory, as the velocity of the 
body changes, as well as the axis of rotation Ω-Ω (Fig. 
1) relative to the body and relative to the airflow. To 
determine the movement of an axis Ω-Ω, a 
differential vector Eq. 5 would need to be solved, 
which in general is reduced to three scalar 
differential equations. 

The idea is that the direction of rotation is 
considered constant along one increment and that 
the change of direction is obtained at the end of each 
increment, using the effective value of the 
aerodynamic moment and the integrated expression 
(5): 
 

�⃗⃗�𝑐𝑚 𝑝 = �⃗⃗�𝑐𝑚 𝑝−1 + ∫ �⃗⃗⃗�𝑎𝑒𝑟𝑜(𝑡)𝑑𝑡
𝑇

0
= �⃗⃗�𝑐𝑚 𝑝−1 + �⃗⃗⃗�𝑎𝑒𝑟𝑜−𝑒𝑓𝑇. 

                                                                                (20) 
 

The new axis of the body rotation for the next 
increment p is determined from the direction 

obtained from angular momentum �⃗⃗�𝑐𝑚 𝑝. If the 

angular velocity of the initial rotation is relatively 
high or if the time of the body flight to the obstacle is 
relatively short (such as in the case of HE projectile 
fragments) then the Ω-Ω axis will not significantly 
move during body flight and can be considered 

constant. Then the force �⃗�𝑎𝑒𝑟𝑜−𝑒𝑓  will only depend 

on the change in the fluid relative airflow velocity 
along the trajectory of the body center of mass. 

3. Numerical simulations 

In order to estimate the components of the 
aerodynamic force, numerical simulations around an 
irregularly shaped body were performed in Ansys 
Fluent. 

 
 The method of numerical simulations of air flow 

around an irregularly shaped body consisted of 
the: digitalization (3D model in CAD) of the body 
model using real fragment (Fig. 2),  

 domain discretization with around 700 000 cells 
(Fig. 2),  

 characterization of the resistive medium,  
 initial and boundary conditions (Fig. 2),  
 solver and turbulence model selection and  
 aerodynamic force components estimation (UDF 

Script). 
 
The body was considered stationary (for a single 

orientation, Fig. 3) and the flow around it was 
analyzed. The reason for this approach is extremely 
high requirements for large solution domain, and 
therefore, high requirements for computer resources 
if the spatial motion of the fragment (6DOF 
numerical simulations) are considered. 

Numerical simulations for 24 body orientations 
were performed for angles 0- 360 with 15 angle 
increments. Fig. 3 shows the schematic position of 
the body (fragment) in numerical simulations. 

 

 
Fig. 2: Fragment shape, domain discretization and schematic of boundary conditions 
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Fig. 3: Schematic position of the body (fragment) in numerical simulations 

 

The velocity vector was directed in the positive 
direction of axis X of the coordinate system set in the 
body center of mass (Fig. 3). The coordinate system 
in the initial position of the body coincides with the 
principal axes of inertia (defined in CAD and 
exported as iges format, together with the 3D body 
model). 

For all body orientations (Fig. 3), simulations of 
flow over the the body for 9 different velocities (0.6, 
0.8, 1, 1.2, 1.3, 1.5, 2, 3 and 4 Mach) were carried out. 
Using the whole range of velocities in simulations, it 
is possible, together with the model, shown in 
Section 2, to estimate trajectory for the the body 
with an irregular shape. In simulations, air is 
modeled as homogeneous, isotropic, ideal gas with 
pressure-temperature dependent density , specific 
heat Cp, thermal conductivity k and dynamic 
viscosity . 

At the end of the domain, Pressure Farfield 
condition was used, which is commonly used in 
Fluent in aerodynamic simulations, where the effect 
of compressibility is dominant. The No Slip condition 
is defined on the surface of the body, which means 
that the relative flow velocity on the surface of the 
body is equal to zero. 

Boundary condition - the wall is used in the the 
case when the viscous effects cannot be ignored and 
is relevant to most fluid flow situations (Fluent 
ANSYS, 2011). According to the recommendation 
(Fluent ANSYS, 2011) for use with compressible 

flows, a density-based solver was selected in the 
simulations, where mass, flow, and energy equations 
are determined as the Navier-Stokes equation 
system in integral form for an arbitrary control 
volume. Using the Navier-Stokes equation in the 
density-based solver in certain cases (when there is 
a large difference between the velocity of the flow 
and the local sound velocity) results in lower 
convergence, and in this case, the preconditioning 
technique (Fluent ANSYS, 2011) is used.  

According to the recommendations (Fluent 
ANSYS, 2011), the Spalart-Allmaras turbulence 
model was used in the simulations. This is a 
relatively new physical model of turbulence. It has 
been developed specifically for aerodynamic 
applications (especially in the aerospace industry) 
and has proven to be effective for the boundary 
layers with high-pressure gradients, and has been 
particularly effective for transonic flows around the 
aero profiles, including flows with significant 
separation of the boundary layer. The ever-
increasing popularity of the Spalart-Allmaras model 
contributed to the rapid implementation of these 
models on unstructured meshes, unlike the classic 
aerodynamic turbulence models such as Baldwin-
Lomax or Johnson-King (Anderson, 1991; Pope, 
2000; Ramsey, 2012). 

A program (in C programming language) was 
written that determines the aerodynamic forces for 
all three coordinate axes. For each cell on the body, 
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the forces are determined in three directions, as 
follows: 

 
𝐹𝑥 𝑖 = 𝑝 𝑆𝑥 𝑖 , 𝐹𝑦 𝑖 = 𝑝 𝑆𝑦 𝑖 , 𝐹𝑧 𝑖 = 𝑝 𝑆𝑧 𝑖 ,                (21) 

 
where: Fxi, Fyi i Fzi- force components for each 

body cell, ps - pressure on the surface of the wall, and 
Sxi, Syi and Szi - the elementary exposed body surfaces 
vertical to the respective coordinate axes. 

Then the components of the total pressure force 
Fx, Fy and Fz are determined: 
 
𝐹𝑥 = ∑ 𝐹𝑥 𝑖

𝑛
𝑖=1 ,  𝐹𝑦 = ∑ 𝐹𝑦 𝑖

𝑛
𝑖=1 , 𝐹𝑧 = ∑ 𝐹𝑧 𝑖

𝑛
𝑖=1 .                (22) 

 
Solver of Ansys Fluent is set by dynamically 

loading the developed UDF (user defined function) 
program and executing the commands entered into 
it. The UDF program is written so that the results are 
printed as a table in a separate .txt document. 

A numerical model was validated using available 
experimental data for drag coefficient CD of the cube. 
This coefficient is determined using expression 
(Anderson, 1991): 

 

𝐶𝐷 =
𝐹𝐷

𝑞𝑆
,                    (23) 

 
where: FD is the drag force, S is the reference area 
and 𝑞 = 0,5 𝜌𝑣2 is dynamic pressure. 

 
The experimental data (Schamberger, 1971; 

Hoerner, 1965) of CD for cube flat-on flow (flow 
perpendicular to the cube side) were compared with 
values of CD obtained using numerical simulations. 

In the process of validation of results, the 
discretization of space and time, solver and initial 
and boundary conditions in the case of simulation of 
the airflow around 3D cube models were the same as 
in the numerical model of flow around the 3D model 
of the irregularly shaped body. 

Fig. 4 gives a comparison of numerical simulation 
results with experimental data (Schamberger, 1971, 
Hoerner, 1965) for flat-on orientation of cubes. The 
difference between values of the CD from simulations 
and experiments were less than 10%. 

 

 
Fig. 4: Comparison of CD from simulations and experiments (Schamberger, 1971; Hoerner 1965) for cube 

 
4. Program for prediction of trajectory of 
irregularly shaped bodies 

MatLab was used to make a program for 
prediction of the trajectory of irregularly shaped 
bodies, using the physical model developed in 
Section 2 and the results of numerical simulations in 
Section 3. 

Using the MatLab program developed in the 
research, the trajectory of an irregularly shaped 
body is estimated based on the effective value of the 
aerodynamic force on the trajectory increment, 
which means that the exact orientation of the body 
during the flight is not taken into consideration, and 
that the influence of the different body orientations 

is taken into account through the effective 
aerodynamic force. 
Input data of the program are (Fig. 5): 
 
 database with values of aerodynamic force for 

different Ma numbers (results of numerical 
simulations), 

 mass of the body, 
 initial velocity, 
 initial angular velocity, and 
 initial coordinates of the center of mass (initial 

body position). 
 
Output data of the program are (Fig. 5): 
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 coordinates of the center of mass (spatial 
trajectory), and body velocity. 

 

 
Fig. 5: Flow diagram of the Matlab program for the 

trajectory estimation 

After completion of the calculation, the program 
makes the diagrams of the body velocity as a 
function of time and distance, as well as the visual 
representation of the spatial trajectory of the body. 

5. Results and discussion 

Based on the developed physical model, database 
(Appendix A) on aerodynamic forces acting on the 
body at different velocities (obtained from numerical 
simulations), and a developed program in Matlab 
(Appendix B) for the evaluation of the basic elements 
of the trajectory for an irregularly shaped bodies, an 
estimate of the trajectory (Fig. 6) for the real body of 
an irregular shape (shown in Fig. 3) is made. 

Fig. 6 shows the results of MatLab program for 
estimating the trajectory and velocity of the 
irregularly shaped body. 

 

 
Fig. 6: Results of the program for estimating the trajectory and velocity of the irregularly shaped body 

 

Initial conditions were: 
 

 body mass (52.5g, numerical simulations were 
performed with body of this mass), 

 initial center of mass coordinates (0, 2m, 0), 
 the initial translational speed (1000m/s, 0, 0) - the 

initial velocity was in the direction of axis x and it 
coincides with a coordinate system for which the 
values of the aerodynamic force are obtained in 
numerical simulations),  

 initial angular velocity (0, 0, 200rad/s). 
 
From the diagram in Fig. 6 the following 

conclusions can be made: 
 

 The trajectory of an irregularly shaped body is not 
located in a single plane but represents a spatial 
trajectory (body moves in all three coordinate 
axes). The effect of lateral wind is not taken into 
account in this analysis.  

 Significant lateral (side) movement (in the 
direction of z axis) of the body is noticed, and for 
these initial conditions, the lateral movement was 
approximately 30m. Lateral movement, in this 
case, was solely due to the irregular shape of the 
body. Ratio of lateral movement (30m in direction 
of z axis) to straight movement (193m in direction 
of x axis) was around 15%. 

 Time of flight was around 0,42s. 
 The velocity of the body is decreasing relatively 

fast and by 0,42s it is already reduced from 
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1000m/s to around 270m/s. During this time the 
body traveled around 193m. This means that the 
kinetic energy of the body with an initial value of 
around 26KJ decreased by 0,42s to a value of 
around 1,9 KJ. In the case of HE projectile 
fragments, this kinetic energy of 1,9kJ at 193m is 
more than enough to kill a human since it is 
considered that kinetic energy of 80J (energy of 
lethal fragment) is enough for incapacitation of the 
human target (AASTP, 2010). 

 
Fig. 7 shows trajectories of an irregularly shaped 

body (from Fig. 3) for the same initial conditions as 
in Fig. 6, but now with simulations in the MatLab 
program being performed for several different initial 
velocities (4, 3, 2, 1 and 0.8 Mach). 

Fig. 7 shows that by increasing the initial velocity 
the range of the body also increases, but at the same 
time there is a greater deflection of the body in the 
direction of Z axis (sideways). Thus for example, at 
the initial velocity of 4 Mach, for given initial 
conditions, the range of the body is around 227 
meters and the lateral deflection is around 49m. On 
the other hand, at the initial velocity of 0.8 Mach the 
range of the body is around 88m and the lateral 
movement was around 10m. The vertical axis is 

taken to be the y axis, such that the −𝑚𝑔 term in Eq. 
9 instead of Eq. 10. 

These results point to the fact that the irregularly 
shaped body may have a significant lateral force 
component, which lead to a sideways motion of such 
irregular bodies. Results also show that fragments 
from high explosive projectiles can be lethal for 
humans even at large distances. 

6. Conclusion 

Currently, to the best of our knowledge, there is 
no effective exact analytical model for determining 
the trajectory of an irregularly shaped body. 
Although the general equations of motion for any 
rigid body are represented by (4) and (5), those 
differential equations of motion are not applicable 
for bodies that move with high velocities over 
relatively long distances and make extremely high 
number of rotations during the motion. Even if the 
resistance force is determined for high number of 
directions relative to the body, the numerical 
procedure would last extremely long to determine 
exact orientation of the body for every time step 
during the motion. 

 

 
Fig. 7: Results of program for estimating trajectory of an irregularly shaped body with different initial velocities 

 

In this paper, a model was developed for 
estimating trajectory and velocity of an irregularly 
shaped body using the data of the aerodynamic force 
obtained from numerical simulations. This way, the 
real body geometry was taken into account.  

The translational component of motion was 
solved for incrementally; using the expanded form of 
(4), but the total aerodynamic force was modeled 
and implemented as an effective resistance force that 
is generated during the rotation over a full rotation. 
Therefore, the rotational component is not solved for 
exactly, but modeled with an assumption that the 

body will continuously rotate during the motion 
along the trajectory due to the initial angular velocity 
and the gyroscopic effect that keeps the axis of the 
rotation due to relatively high initial angular 
velocities.  

In this analysis, the focus was on obtaining the 
body's center of mass trajectory, but since the 
resistance force depends on how the body is 
oriented, we modeled the rotational component to 
obtain the effective resistance force that has the 
same impulse over a time period of a full rotation. 
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This time period was taken as a time step for the 
rotational component of motion. 

To calculate the effective force, that has the same 
effect as a number of the resistance forces in 
different directions, due to the rotation of the body 
along the trajectory, in total 216 numerical 
simulations of airflow around irregularly shaped 
body were performed for different body 
orientations, and for one full rotation (about one axis 
of rotation) of the body, with a 15° angle increment 
(0-360), for the following flow velocities: 0.6, 0.8, 1, 
1.2, 1.3, 1.5, 2, 3 and 4 Mach. 

The results show that the trajectory of an 
irregularly shaped body is spatial curve because for 
the irregularly shaped bodies we cannot neglect the 

lateral component of the aerodynamic force - which 
leads to the significant sideways motion of the body. 

By increasing initial velocity of the body, for the 
same other initial conditions, the range of the body 
increases, but also its lateral movement. 

Results show that fragments from HE projectiles 
(perhaps a best representative of the irregularly 
shaped bodies) can be lethal even at large distances.  

Appendix A. Aerodynamic force data 

In this appendix tables for required data 
regarding Aerodynamic force data in different 
velocities are provided. 

 
 

Table A1: Aerodynamic force data (for velocities: 0.6 Mach – 1.3 Mach) 

Orientation 
0.6 Mach 0.8 Mach 1.0 Mach 1.2 Mach 1.3 Mach 

Faero-x (N) Faero-y (N) Faero-z(N) Faero-x (N) Faero-y(N) Faero-z(N) Faero-x (N) Faero-y (N) Faero-z (N) Faero-x (N) Faero-y (N) Faero-z (N) Faero-x (N) Faero-y (N) Faero-z (N) 

0 19.25 -1.13 12.61 39.10 -2.09 21.94 77.13 -2.93 28.64 112.02 -3.80 38.93 130.97 -4.36 44.19 

15 18.65 2.63 12.28 37.52 5.84 23.24 73.85 11.18 29.40 107.29 16.61 38.82 125.71 19.63 44.19 

30 16.38 5.43 11.99 32.87 11.68 23.06 64.12 23.12 28.84 93.10 33.09 36.94 108.88 38.83 41.44 

45 12.79 5.86 9.20 25.06 12.54 18.59 48.43 26.25 24.51 70.52 37.56 30.86 82.52 43.91 34.40 

60 8.37 4.57 4.93 15.72 8.72 9.94 28.67 17.06 18.00 43.50 26.51 22.72 51.52 31.70 24.81 

75 4.55 2.38 1.24 8.40 4.41 2.46 14.88 7.49 4.38 22.71 10.83 6.03 26.88 13.04 7.08 

90 2.42 0.30 0.21 4.46 0.57 0.33 8.51 0.98 0.29 13.80 1.49 0.51 16.43 1.96 0.75 

105 4.07 -1.76 -0.29 7.56 -3.26 -0.39 13.47 -5.65 -0.80 20.29 -8.11 -1.33 23.69 -9.51 -1.45 

120 7.14 -4.44 0.38 13.56 -8.78 1.29 25.01 -16.84 1.46 38.17 -26.16 -0.50 44.99 -31.26 -1.50 

135 10.55 -6.38 2.75 20.94 -13.35 4.67 41.42 -26.96 1.41 60.58 -38.95 -2.50 70.83 -45.81 -4.67 

150 13.73 -6.40 2.95 28.32 -13.93 4.31 55.94 -26.02 -2.29 80.90 -36.55 -8.23 94.56 -42.82 -11.31 

165 15.74 -3.90 0.57 32.73 -8.53 2.12 66.03 -14.80 -5.76 96.18 -20.77 -13.09 113.05 -24.46 -17.03 

180 16.45 -0.22 -0.11 34.42 -0.24 0.39 71.48 -1.29 -8.51 103.81 -1.49 -16.43 121.61 -1.56 -20.53 

195 16.00 3.92 1.11 33.42 8.06 -0.62 68.17 13.05 -8.04 98.94 18.81 -16.16 115.48 22.24 -20.22 

210 14.31 6.32 3.09 29.93 14.00 3.38 59.20 25.53 -4.69 85.38 35.25 -12.79 99.44 40.89 -16.51 

225 11.29 6.30 2.44 22.66 13.50 5.44 45.06 27.60 -0.52 66.08 39.42 -6.58 77.06 45.75 -9.50 

240 7.75 4.15 -1.11 14.90 8.20 -0.80 27.99 16.64 -1.31 43.04 25.97 -5.34 51.10 30.82 -6.83 

255 5.16 2.14 -0.74 9.98 4.20 -0.67 18.84 8.44 -1.14 29.62 13.18 -3.47 35.41 15.57 -4.31 

270 2.57 0.13 -0.37 5.07 0.21 -0.55 9.69 0.24 -0.97 16.20 0.39 -1.60 19.73 0.32 -1.80 

285 5.03 -1.64 1.92 9.73 -3.28 3.94 18.62 -7.23 7.20 29.03 -11.50 9.43 34.69 -13.69 10.43 

300 7.49 -3.41 4.21 14.40 -6.76 8.42 27.55 -14.70 15.37 41.87 -23.38 20.46 49.65 -27.70 22.66 

315 11.76 -4.77 7.99 23.45 -9.97 13.77 44.83 -19.84 20.95 65.22 -29.04 26.72 76.38 -34.10 29.72 

330 16.03 -6.13 11.77 32.51 -13.18 19.12 62.12 -24.99 26.53 88.57 -34.70 32.99 103.10 -40.51 36.78 

345 18.33 -4.25 12.36 37.11 -8.80 20.50 72.00 -15.20 27.52 103.93 -22.15 36.17 121.82 -26.29 41.42 

360 19.25 -1.13 12.61 39.10 -2.09 21.94 77.13 -2.93 28.64 112.02 -3.80 38.93 130.97 -4.36 44.19 

 

 

Table A2: Aerodynamic force data (for velocities: 1.5 Mach – 4 Mach) 

Orientation 
1.5 Mach 2 Mach 3 Mach 4 Mach 

Faero-x (N) Faero-y (N) Faero-z (N) Faero-x (N) Faero-y (N) Faero-z (N) Faero-x (N) Faero-y (N) Faero-z (N) Faero-x (N) Faero-y (N) Faero-z (N) 

0 170.73 -5.53 55.71 287.59 -9.20 92.80 608.80 -20.99 203.58 1068.78 -39.00 362.74 

15 164.62 26.30 56.06 278.73 45.56 92.29 599.87 99.29 196.06 1041.07 173.90 339.88 

30 142.63 51.13 51.31 243.58 88.08 80.36 526.96 191.54 162.12 924.01 337.72 275.72 

45 108.42 57.44 41.68 186.14 96.82 60.70 410.01 208.50 113.73 733.00 367.54 186.59 

60 68.66 42.40 28.73 118.16 71.22 38.91 253.36 143.23 65.60 444.50 240.19 100.93 

75 36.06 18.28 9.50 63.92 34.34 16.20 137.52 71.38 29.59 233.87 113.94 45.49 

90 22.17 3.18 1.26 38.51 7.72 3.04 80.81 22.32 8.60 137.43 43.51 15.83 

105 31.07 -12.73 -1.69 52.49 -21.73 -2.19 106.72 -38.02 0.56 178.59 -52.33 6.29 

120 59.66 -41.82 -3.62 101.80 -70.35 -6.92 222.99 -144.65 -6.76 403.99 -248.86 1.91 

135 92.70 -60.57 -8.97 158.49 -105.04 -16.84 343.32 -228.45 -15.75 606.39 -403.09 1.20 

150 123.79 -56.52 -17.42 208.97 -99.52 -28.07 431.29 -215.77 -18.73 741.64 -378.74 10.33 

165 148.32 -32.92 -24.36 247.20 -57.87 -35.52 497.70 -120.81 -16.62 844.97 -207.71 19.47 

180 158.46 -1.55 -28.18 262.14 -1.44 -40.59 524.24 -0.54 -21.65 890.38 0.73 19.23 

195 150.93 30.18 -28.27 248.21 53.87 -39.24 498.24 115.68 -18.00 846.71 202.36 18.46 

210 129.36 53.62 -23.82 214.83 93.91 -34.52 441.40 201.31 -23.48 762.95 353.11 3.33 

225 100.47 59.32 -15.02 170.60 99.67 -25.50 366.16 210.89 -25.83 650.97 372.04 -10.84 

240 68.09 40.58 -9.25 117.38 65.52 -13.91 259.31 128.77 -19.67 469.87 214.95 -16.61 

255 47.88 20.33 -5.67 83.96 32.01 -7.86 186.95 60.94 -9.65 335.86 99.55 -5.70 

270 27.68 0.09 -2.09 50.53 -1.50 -1.80 114.59 -6.90 0.37 201.86 -15.85 5.22 

285 46.88 -17.94 11.78 82.38 -29.04 16.13 183.31 -57.05 30.54 323.22 -95.38 50.30 

300 66.09 -35.96 25.65 114.23 -56.59 34.05 252.02 -107.19 60.71 444.57 -174.90 95.37 

315 100.69 -44.82 35.79 172.11 -74.82 54.05 374.21 -155.16 107.81 658.22 -265.99 181.45 

330 135.30 -53.67 45.94 230.00 -93.05 74.05 496.40 -203.12 154.92 871.88 -357.08 267.53 

345 159.62 -35.11 52.23 271.03 -61.32 87.46 580.75 -135.83 191.88 1010.06 -239.95 337.79 

360 170.73 -5.53 55.71 287.59 -9.20 92.80 608.80 -20.99 203.58 1068.78 -39.00 362.74 
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Appendix B. The main part of MatLab program 
for prediction of trajectory of an irregularly 
shaped body 

In this appendix the main part of MatLab program 
for prediction of trajectory of an irregularly shaped 
body is provided. 
 
% Program for prediction of trajectory of an irregularly 
shaped body 
% Date: 20.06.2017. 
% Authors: Elvedin Kljuno and Alan Catovic 
%_________________________________________________________________
______% the rest of the introductory part 
clc 
clear all 
close all 
% Input of aerodynamic forces (results from numerical 
simulations of airflow around an irregularly shaped body) 
F06=[…]; 
F08=[…]; 
F10=[…]; 
F12=[…]; 
F13=[…]; 
F15=[…]; 
F20=[…]; 
F30=[…]; 
F40=[…]; 
% Components of initial velocity  (m/s) 
v0x=-1000; % negative sign (in order for coordinate systems 
to be the same as in numerical simulations in Fluent) 
v0y=0;  
v0z=0; 
% Initial angular velocity (rad/s) 
om=200; 
% Initial position (m) 
x0=0;y0=2;z0=0;  
% nf  - number of increments at one ful rotation, mf=3 
(number of force components) 
[nf,mf]=size(F06); 
% effective aerodynamic forces 
Feff06=1/nf*sum(F06); 
Feff08=1/nf*sum(F08); 
Feff10=1/nf*sum(F10); 
Feff12=1/nf*sum(F12); 
Feff13=1/nf*sum(F13); 
Feff15=1/nf*sum(F15); 
Feff20=1/nf*sum(F20); 
Feff30=1/nf*sum(F30); 
Feff40=1/nf*sum(F40); 
% Body mass (kg) 
m=0.0525;  
% Period of one full rotation (s) 
T=2*pi/om;  
% Gravity force acceleration (m/s^2) 
g=9.81; 
% Number of incremental steps along trajectory  
ns=200;  
% Forming of velocity vectors  
xcmd=zeros(ns+1,1); 
ycmd=xcmd;zcmd=xcmd;  
xcm=xcmd;ycm=xcmd;zcm=xcmd;  
xcmd(1)=v0x;ycmd(1)=v0y;zcmd(1)=v0z 
xcm(1)=x0;ycm(1)=y0;zcm(1)=z0;  
t=0;tv=zeros(1,ns);  
vzv=340.9;  
vv=zeros(ns+1,1); 

ind=ns; 
for i=1:ns  
    t=t+T;  
    tv(i+1)=t;  
    v=sqrt(xcmd(i)^2+ycmd(i)^2+zcmd(i)^2);  
    vv(i)=v; 
    Ma=v/vzv;  
    if Ma<0.6 
        rmah=Ma/0.6;         
        Feff=rmah^2*Feff06;  
    elseif Ma<0.8 
        Feff=Feff06+(Ma^2-0.6^2)/(0.8^2-0.6^2)*(Feff08-
Feff06);  
     elseif Ma<1.0 
        Feff=Feff08+(Ma^2-0.8^2)/(1.0^2-0.8^2)*(Feff10-
Feff08); 
    elseif Ma<1.2 
        Feff=Feff10+(Ma^2-1.0^2)/(1.2^2-1.0^2)*(Feff12-
Feff10); 
    elseif Ma<1.3 
        Feff=Feff12+(Ma^2-1.2^2)/(1.3^2-1.2^2)*(Feff13-
Feff12); 
    elseif Ma<1.5 
        Feff=Feff13+(Ma^2-1.3^2)/(1.5^2-1.3^2)*(Feff15-
Feff13); 
    elseif Ma<2.0 
        Feff=Feff15+(Ma^2-1.5^2)/(2.0^2-1.5^2)*(Feff20-
Feff15); 
    elseif Ma<3.0 
        Feff=Feff20+(Ma^2-2.0^2)/(3.0^2-2.0^2)*(Feff30-
Feff20); 
    else 
        Feff=Feff30+(Ma^2-3.0^2)/(4.0^2-3.0^2)*(Feff40-
Feff30); 
    end 
    % coordinate transformations % ... 
    Feff_x=Feff(1); 
    Feff_y=Feff(2); 
    Feff_z=Feff(3);    
    if (((i>1)&&(vv(i)>vv(i-
1)))||(xcmd(i)*xcmd(1)<0)||(ycm(i)<0)) 
        tfinal=t 
        ind=i 
        yfinal=ycm(ind) 
        xfinal=xcm(ind) 
        zfinal=zcm(ind) 
        break 
    end 
    xcmd(i+1)=xcmd(i)+1/m*Feff_x*T;  
    xcm(i+1)=xcm(i)+xcmd(i)*T; 
    ycmd(i+1)=ycmd(i)+1/m*Feff_y*T-g*T; 
    ycm(i+1)=ycm(i)+ycmd(i)*T; 
    zcmd(i+1)=zcmd(i)+1/m*Feff_z*T;  
    zcm(i+1)=zcm(i)+zcmd(i)*T; 
end 
 vv(ns+1)=vv(ns); 
% Printing of results (diagrams) 
figure(1) 
subplot(2,2,1), 
plot(tv(1:ind),xcm(1:ind),'mag',tv(1:ind),zcm(1:ind),'green',t
v(1:ind),ycm(1:ind),'red') 
title(' Movement of the center of mass (xcm, ycm i zcm)') 
subplot(2,2,2), plot3(xcm(1:ind),zcm(1:ind),ycm(1:ind)); 
title(' Trajectory of a body') 
xlabel('x'); 
ylabel('z'); 
zlabel('y'); 
subplot(2,2,3), plot(tv(1:ind),vv(1:ind)) 
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title('Velocity as a function of time') 
subplot(2,2,4), plot(xcm(1:ind),vv(1:ind)) 
title('Velocity as a function of distance') 

% printing of results in command window is the rest of 
the program 

References  

AASTP (2010). AASTP-1: Manual of Nato safety principles for the 
storage of military ammunition and explosives (one Edition). 
Allied Ammunition Storage and Transport Publication, 
NATO/PFP. 

Anderson Jr JD (1991). Fundamentals of aerodynamics. MacGraw-
Hill, New York, USA.  

Fluent ANSYS (2011). ANSYS fluent theory guide. ANSYS Inc., 
15317: 724-746.  

Hoerner SF (1965). Fluid-dynamic drag: practical information on 
aerodynamic drag and hydrodynamic resistance. Hoerner 
Fluid Dynamics, New York, USA. 

Kljuno E and Catovic A (2017a). Instability estimation of 
irregularly shaped bodies moving through a resistive medium 
with high velocity. International Journal of Advanced and 
Applied Sciences, 4(9): 70-79. 

Kljuno E and Catovic A (2017b). Determination of the center of 
pressure and dynamic stability for irregularly shaped bodies. 
International Journal of Advanced and Applied Sciences, 
4(10): 1-9. 

Pope SB (2000). Turbulent flows. Cambridge University Press, 
Cambridge, UK. 

Schamberger RL (1971). An investigation of the use of spin-
stabilized cubes as fragment simulators in armor evaluation 
(No. GAM/MC/71-8). M.Sc. Thesis, Air Force Institute of 
Technology, Graduate School in Wright-Patterson Air Force 
Base, Ohio, USA. 

 


	Prediction of the trajectory of an irregularly shaped body moving througha resistive medium with high velocities
	1. Introduction
	2. Physical model
	3. Numerical simulations
	4. Program for prediction of trajectory of irregularly shaped bodies
	5. Results and discussion
	6. Conclusion
	Appendix A. Aerodynamic force data
	Appendix B. The main part of MatLab program for prediction of trajectory of an irregularly shaped body
	References


